DyPO4·1.5H2O Microcrystals: Microwave/Ultrasound/ Ultraviolet Light- Assisted Synthesis, Characterization and Formation Mechanism

Author:

Li Mengmeng1,Huang Shuang1,Zhang Hang1,Wang Lei1,Zhong Shengliang1ORCID

Affiliation:

1. Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

Abstract

Background: Researchers have pursued the new synthesis method. As a newly developed method, microwave (MW), ultrasound (US) and ultraviolet light (UV) assisted synthesis has drawn increasing interests. Under the synergistic effect, many materials with new structure, morphology and properties may be found. As an important rare-earth phosphate, DyPO4 was selected and the effect of MW, US and UV on the preparation was investigated. Method: The DyPO4·1.5H2O nanostructures were prepared by MW, US, UV and their combination. Results: Hexagonal DyPO4·1.5H2O microcrystals obtained under MW irradiation were broomstick bundles. Needle-shaped products were formed in the presence of MW and US. Interestingly, the broom-sheaf-like structures can self-assemble into flower-shaped structures upon the irradiation of MW and UV. Whereas, MW/UV/US synergetic heating results in mixed morphologies of flower-like and needle-shaped structures. Conclusion: The growth of DyPO4 nanostructures can be tuned by selecting the combination of heating method of MW, US and UV.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3