Synthesis of 1,2-Diamine Bifunctional Catalysts for the Direct Aldol Reaction Through Probing the Remote Amide Hydrogen

Author:

Dodda Rajasekhar1,Samanta Sampak1,Su Matthew1,Zhao John Cong-Gui1

Affiliation:

1. Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States

Abstract

Background: While proline can catalyze the asymmetric direct aldol reactions, its catalytic activity and catalyst turnover are both low. To improve the catalytic efficiency, many prolinebased organocatalysts have been developed. In this regard, prolinamide-based bifunctional catalysts have been demonstrated by us and others to be highly efficient catalysts for the direct aldol reactions. Results: Using the β-acetamido- and β-tosylamidoprolinamide catalysts, the highly enantio- and diastereoselective direct aldol reactions between enolizable ketones and aldehydes were achieved (up to >99% ee, 98:2 dr). A low catalyst loading of only 2-5 mol % of the β-tosylamidoprolinamide catalyst was needed to obtain the desired aldol products in good to high yields and high stereoselectivities. Methods: By carefully adjusting the hydrogen bonding ability of the remote β-amide hydrogen of the 1,2-diamine-based prolinamide bifunctional catalysts, the catalytic activity and the asymmetric induction of these catalysts were significantly improved for the direct aldol reaction between aldehydes and enolizable ketones. Conclusion: Some highly efficient 1,2-diamine-based bifunctional prolinamide catalysts have been developed through probing the remote β-amide hydrogen for its hydrogen bonding capability. These catalysts are easy to synthesize and high enantioselectivities may be achieved at very low catalyst loadings.

Funder

Welch Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3