Green Synthesis of 3-Substituted-4-arylmethylideneisoxazol-5(4H)-one Derivatives Catalyzed by Salicylic Acid

Author:

Mosallanezhad Asiyeh1,Kiyani Hamzeh1

Affiliation:

1. School of Chemistry, Damghan University, Damghan, Iran

Abstract

Background: 4-Arylmethylideneisoxazol-5(4H)-ones are a class of organic compounds with a variety of applications in the agriculture, filter dyes, photonic devices, and pharmaceutical industries. They are also used as synthetic precursors for the synthesis of other organic compounds. As a result, efforts are being made to search new and available catalyst and green methods toward their synthesis. Objective: The aim of this work is to investigate the catalytic activity of salicylic acid as an inexpensive, easy to handle, and safe catalyst to synthesis of some derivatives of isoxazole-5(4H)-ones in water medium. Methods: To aqueous solution of equal amounts of aryl/heteroaryl aldehydes, β-ketoesters, and hydroxylamine hydrochloride; salicylic acid (15 mol%) was added and the reaction mixture was stirred at room temperature for a specified periods. The precipitated product was filtered and washed with water to obtain 3-substituted-4-arylmethylideneisoxazol-5(4H)-ones. The reaction conditions were also optimized and extended to synthesis other isoxazol-5(4H)-ones. Results: The salicylic acid is found to possess acceptable catalytic activity for the promotion of three-component cyclocondensation of aryl/heteroaryl aldehydes, β-ketoesters, and hydroxylamine hydrochloride. The three-component reaction led to construction of 3-substituted-4-arylmethylideneisoxazol- 5(4H)-ones in good to high isolated reaction yields. Conclusion: The efficient and environmental friendliness procedure for the synthesis of isoxazol- 5(4H)-ones is introduced. The reaction also carried out smoothly in water as a cost-effective, simple, green, and non-toxic solvent at room temperature without using heating, microwave, and ultrasound sources.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3