Microwave-assisted One-pot Synthesis of 2-Substituted Quinolines by Using Palladium Nanoparticles as a Catalyst developed from Green Alga Botryococcus braunii

Author:

Arya Anju1,Mahajan Akhil1,Chundawat Tejpal Singh1

Affiliation:

1. Department of Applied Sciences, The North Cap University, Sector 23-A, Gurugram-122017, Haryana, India

Abstract

Background: Quinoline is a type of N-based organic heterocyclic biologically active compound. Quinolines have grasped the interest of scientists because of their wide scope of applications. Several methods have been developed for the synthesis of quinoline and its derivatives. In this study, a new, efficient, simple, one-pot synthesis of the substituted quinolines was developed by using palladium nanoparticles as a catalyst. Methods: Catalyst synthesized by algal extract of green alga Botryococcus braunii and palladium acetate solution, and characterized by different instrumental techniques like FTIR, SEM, and XRD. The synthesized palladium nanoparticles explored for the catalytic activity in the synthesis of quinoline derivatives by the use of 2-aminobenzyl alcohol in toluene with acetyl derivatives followed by the addition of potassium hydroxide. The formation of the product was confirmed by 1HNMR, 13C NMR, and electron ionization mass spectra. Results: The formation of palladium nanoparticles characterized by visual observation means the color change from light pale yellow to dark brown indicates the reduction of palladium ions into palladium nanoparticles. Synthesized palladium nanoparticles characterized by FTIR spectrum of the algal extract of green algae B. braunii for the presence of proteins, lipids, carbohydrates, carotenoids, vitamins and other secondary metabolites in algal extract, which function as active components for bioreduction. The morphology of the catalyst was confirmed by SEM and X-ray diffraction measurements for shape, crystalline nature and size. The synthesized palladium nanoparticles explored for the catalytic activity in the synthesis of quinoline derivatives by use of 2-aminobenzyl alcohol in toluene and added acetyl derivatives followed by the addition of potassium hydroxide. In order to establish the optimum heating method, a comparative study between conventional and microwave heating method was carried out in the presence of palladium nanoparticles as a catalyst. Conclusion: This protocol provides a convenient and practical procedure for the preparation of quinoline derivatives from 2-aminobenzyl alcohol, acetyl derivatives, potassium hydroxide and palladium nanoparticles as a catalyst. This protocol will be helpful in synthesizing other quinoline derivatives and several organic heterocycles which are used in different fields such as biological, industrial, pharmaceutical, chemical, medical, etc.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3