A Critical Analysis of the Modern Synthetic Procedures Used to Produce Benzimidazole Candidates

Author:

Sharma Shikha1ORCID,Dangi Neha1ORCID,Mittal Nitin1ORCID,Kalra Naresh1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, Lords University, Alwar, Rajasthan, 301028, India

Abstract

Background:: Benzimidazole is a remarkable heterocyclic chemical compound in which the phenyl ring is fused with the imidazole ring at positions 4 and 5. Benzimidazole derivatives have lots of medicinal activity in the pharmaceutical industry. Therefore, the synthesis of benzimidazole derivatives is challenging in this scientific field. Methods:: In benzimidazole synthesis, simple nucleophilic substitution and condensation reactions involving carbonyl compounds and o-phenylenediamine have been used in previous times. Currently, green chemistry aspects such as solvent-free conditions, metal-free conditions, or using nanoparticle catalysts in various ways involving condensation, and cyclization are the methods of the new era. Results:: Green chemistry methods are used widely in various chemical reactions, such as it was observed that the use of solvent-free conditions, metal-free conditions, or using nanoparticle catalysts molecules is a more efficient way to synthesize benzimidazole derivative. Conclusion:: In this review, benzimidazole scaffold syntheses that have only recently been described in the literature through the end of 2021 are covered. Monosubstituted benzimidazoles (MSBs) and disubstituted-benzimidazoles (DSBs) are the primary targets of our research currently. Different ways have been found to make functionalized derivatives of benzimidazole, which are shown in this review as a powerful scaffold.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3