Condensation Reactions of Aromatic Aldehydes with Active Methylene Compounds: The Beneficial Sinergy of Alkaline Ionic Liquid in One Pot Synthesis

Author:

Bankar Swapnil R.1ORCID

Affiliation:

1. Department of Chemistry, Rayat Shikshan Sanstha’s, Sharadchandra Pawar Mahavidyalaya, Lonand (Affiliated to Shivaji University, Kolhapur) Dist. Satara (MS) 415521, India

Abstract

Background: In recent times, there has been on-going interest in developing convenient and environmentally friendly synthetic methods in organic chemistry. The use of ionic liquid catalysts in organic synthesis is a developing area that allows reactions to be run at low temperatures and without solvents. Literature overview revealed that room temperature supported ionic liquid catalysis is a developing field in catalytic science with huge application in organic synthesis. Hence in this current article, our focus is on the one-pot synthesis of arylidene derivatives with the use of ([bmim] OH) ionic liquid. Objectives: We describe here the use of an ionic liquid catalyst, 1-n-butyl-3-methylimidazolium hydroxide, [bmim] OH), in the convenient one pot synthesis of arylidene derivatives by the reaction of the active methylene compound, malononitrile, with pyrazole aromatic aldehydes under microwave irradiation. Methods: The functionalized ionic liquid, 1-n-butyl-3-methylimidazolium hydroxide ([bmim] OH), catalyzed Knoevenagel condensation reactions of pyrazole aromatic aldehydes with active methylene compound malononitrile carried out under microwave irradiation. The reaction progress was monitored by thin layer chromatography and the synthesized compounds were further characterized by NMR spectroscopy. Results: This proposed work demonstrates the utility of the use of the ionic liquid catalyst [bmim] OH, in the suitable, high yield (80-95%) microwave assisted reactions of pyrazole aromatic aldehydes with the active methylene compound, malononitrile. Conclusion: An eco-friendly synthesis of pyrazole derivatives has been demonstrated using ([bmim] OH) ionic liquid as a catalyst for the Knoevenagel condensation reactions of pyrazole aromatic aldehydes and malononitrile with microwave irradiation. The advantages of this green method are its convenience, mild reaction conditions, and high product yields (80-95%).

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3