Eco-friendly Synthesis of 2-Amino-4H-Chromene Catalysed by HRSPLAE and Anti-cancer Activity Studies

Author:

Kamanna Kantharaju1,Tonape Vasant T.1,Kamath Aravind D.1

Affiliation:

1. Department of Chemistry, School of Basic Sciences, Rani Channamma University, P-B, NH4, Belagavi-591156 Karnataka, India

Abstract

Background: Several types of catalysts have been cited in the literature. However, the current work showed that a multi-component reaction involving aldehydes, malononitrile, and resorcinol or α/β-naphthol could produce 2-amino-4H-chromene in a more environmentally friendly manner. The reaction is optimized by both stirring and microwave methods, but the reaction carried out under microwave irradiation is found to be faster with easy separation of the product with high yield and purity. The catalyst is analyzed for the presence of elemental composition using Flame Photometry (FP) and SEM-EDX. The synthesis of 2-amino-4H-chromenes is catalyzed by the new, green catalyst HRSPLAE (Water Extract of Hibiscus Rosa Sinensis plant dry leaves ash) within 3-5 min. The final product is analyzed by FT-IR, 1H-, 13C-NMR, and mass spectrometry techniques and the product obtained is free from the use of chromatographic separation with isolation and yield of 80–95%. Selected 2-amino-4H-chromene derivatives (4b and 4c) were screened for their anti-cancer and antimicrobial activity in vitro. Methods: The agro-waste sourced from Hibiscus rosa-sinensis plant dry leaves ash is utilized for the preparation of HRSPLAE catalyst, which is employed for the synthesis of 2-amino-4H-chromene derivatives under microwave irradiation. Results: 2-Amino-4H-chromene derivatives were obtained from aromatic aldehyde, malononitrile, and resorcinol or α/β naphthol catalyzed by HRSPLAE. They were comprehensively evaluated using flame emission spectrometry, SEM, and EDX. Conclusion: HRSPLAE outperforms expensive catalysts. An efficient simpler workup without column chromatography for increased yield through a new unique green method for the synthesis of 2-amino-4H-chromene derivatives has been developed.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3