Preparation of Ionic Liquid Supported Organocatalysts for the Synthesis of Stereoselective (R)-9-Methyl-5(10)-Octaline-1,6-Dione

Author:

Srivastava Vivek1

Affiliation:

1. Mathematics and Basic Science: Chemistry, NIIT University, NH-8 Jaipur/Delhi Highway, Neemrana (Rajasthan) 301705, India

Abstract

: The synthesis of Proline-2-triethyl-ethylamide hexafluorophosphate (ILPA-PF6) (with 96% yield) and further the application during the synthesis of (R)-9-Methyl-5(10)-octaline-1,6-dione (Wieland-Miescher ketone molecule) are defined in this manuscript. The suggested protocol signifies one of the most efficient methods for the synthesis of these flexible chiral building blocks in good yield. The evident solubility of ionic liquids allows straightforward isolation of the (R)-9-Methyl- 5(10)-octaline-1,6-dione product from reaction mass. Additionally, six times catalyst recycling was considered the main conclusion of this proposed procedure. Background: The synthesis of WMK starts with the Michael Addition step, where the α, β- unsaturated ketone reacts with 2-methyl-1,3-cyclohexanedione followed by the nucleophilic attack and produces the triketone. Further, the isolated triketone goes to intramolecular Aldol Condensation, (in the Robinson Annulation reaction cascade) to get an enolate. Later, followed by the dehydrogenation reaction of enolate (to expel hydroxide ion) the desired product Wieland Miescher Ketone was isolated in good yield. The above conventional method suffers from several drawbacks like a slow reaction rate, the requirement of high boiling point solvent systems, and low reaction yield. Objective:: To prepare ionic liquid-supported organocatalysts for the synthesis of stereoselective (R)- 9-Methyl-5(10)-octaline-1,6-dione Method: This report summarizes the synthesis and its application of triethyl salt-supported prolinebased organocatalysts as recyclable and highly efficient for the asymmetric Wieland-Miescher ketone ((R)-9-Methyl-5(10)-octaline-1,6-dione). An ionic liquid-supported proline (as a catalyst) is equipped with basic proline and a significantly acidic amide moiety to promote the reaction rate, and synchronously having a specialty of ionic liquid could be easy to separate and recycle. Results:: The report simply defined the WMK molecule in good yield and enantioselectivity followed by minimal ether washing. During the reaction, low catalyst loading i.e., 0.5 g of catalyst was found enough to attain the maximum yield and enantioselectivity in 2 hours. Furthermore, catalyst recycling was observed 6 times as a significant element of the suggested catalytic method. Conclusion:: The synthesis of an extremely dynamic and enantioselective ILPA-PF6 catalytic approach is demonstrated in the report. The ILPA-PF6 catalyst was further modified after its characterization for use in the synthesis of the WMK molecule and the subsequent intramolecular aldol reaction of triketone. The WMK molecule was isolated with good yield and enantioselectivity followed by minimal ether washing. During the reaction, low catalyst loading i.e., 0.5 g of catalyst was found enough to get the maximum yield and enantioselectivity in 2 hours. Additionally, catalyst recycling was observed 6 times as a significant element of the suggested catalytic method.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3