Affiliation:
1. Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, P-B, NH-4, Belagavi-591156, Karnataka, India
Abstract
Background:
Present-day chemists are more interested in developing and using green
chemistry protocol for various organic transformations, which employ natural feedstock extracts,
and solvent-free, and greener catalysts; they are well known for their non-hazardous nature and
have replaced many organic and inorganic based catalysts. In literature, the reported homogenous
catalytic approaches have been employed for various bioactive heterocycle syntheses, which follow
the green chemistry principle established for various organic transformations catalyzed by
WERSA, BFE, WEPPA, WEMFSA, WEMPA, and Eichhorniacrassipes. Among them, 2-aryl benzimidazole
derivatives have emerged as prominent molecules with a wide variety of applications in
biological and material science.
Methods:
The agro-waste sourced from the banana peel is utilized for the preparation of BPAE catalyst,
which is employed for the synthesis of 2-aryl benzimidazole derivatives under ultrasound
waves at room temperature.
Results:
Here, 2-Aryl benzimidazoles synthesized through the reaction of a substituted o-phenylene
diamine with substituted benzoyl chloride catalyzed by BPAE under ultrasound waves at
room temperature are described. Furthermore, catalyst BPAE is characterized by flame emission
spectrometry, SEM-EDX, and XRD techniques.
Conclusion:
The present work established an eco-friendly, sustainable and novel approach for the
synthesis of 2-aryl benzimidazoles using natural feedstock BPAE. The major merits of BPAE include
its use as an agro-waste-derived catalyst. It is also highly abundant, inexpensive, yields faster
reactions, has a simple workup, and does not require the use of column chromatography.
Publisher
Bentham Science Publishers Ltd.
Subject
Organic Chemistry,Analytical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献