Antibody-Drug Conjugate PCMC1D3-Duocarmycin SA as a Novel Therapeutic Entity for Targeted Treatment of Cancers Aberrantly Expressing MET Receptor Tyrosine Kinase

Author:

Hudson Rachel1,Yao Hang-Ping1,Suthe Sreedhar Reddy2,Patel Dhavalkumar3,Wang Ming-Hai1ORCID

Affiliation:

1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou , United States

2. Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States

3. Pharmaceutical Research Core, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States

Abstract

Background: Aberrant expression of the MET receptor tyrosine kinase is an oncogenic determinant and a drug target for cancer therapy. Currently, antibody-based biotherapeutics targeting MET are under clinical trials. Objective: Here we report the preclinical and therapeutic evaluation of a novel anti-MET antibody-drug conjugate PCMC1D3-duocarmycin SA (PCMC1D3-DCM) for targeted cancer therapy. Methods: The monoclonal antibody PCMC1D3 (IgG1a/κ), generated by a hybridoma technique and specific to one of the MET extracellular domains, was selected based on its high specificity to human MET with a binding affinity of 1.60 nM. PCMC1D3 was conjugated to DCM via a cleavable valine-citrulline dipeptide linker to form an antibody-drug conjugate with a drug-to-antibody ratio of 3.6:1. PCMC1D3-DCM in vitro rapidly induced MET internalization with an internalization efficacy ranging from 6.5 to 17.2h dependent on individual cell lines. Results: Studies using different types of cancer cell lines showed that PCMC1D3-DCM disrupted cell cycle, reduced cell viability, and caused massive cell death within 96h after treatment initiation. The calculated IC50 values for cell viability reduction were 1.5 to 15.3 nM. Results from mouse xenograft tumor models demonstrated that PCMC1D3-DCM in a single dose injection at 10 mg/kg body weight effectively delayed xenograft tumor growth up to two weeks without signs of tumor regrowth. The calculated tumoristatic concentration, a minimal dose required to balance tumor growth and inhibition, was around 2 mg/kg bodyweight. Taken together, PCMC1D3-DCM was effective in targeting inhibition of tumor growth in xenograft models. Conclusion: This work provides the basis for the development of humanized PCMC1D3-DCM for MET-targeted cancer therapy in the future.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3