An Integrative “Omics” Approach, for Identification of Bona Fides PLK1 Associated Biomarker in Esophageal Adenocarcinoma

Author:

Bibi Nousheen1,Rashid Sajid2,Nicholson Judith3,Malloy Mark4,O'Neill Rob5,Blake David6,Hupp Ted5

Affiliation:

1. Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawer, Pakistan

2. National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan

3. Department of Oncology, University of Oxford, United Kingdom

4. Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales 2109, Australia

5. Edinburgh Cancer Research Center, University of Edinburgh, United Kingdom

6. Cyclacel Ltd., Dundee, United Kingdom

Abstract

Background: The rapid expansion of genome-wide profiling techniques offers the opportunity to utilize various types of information collected in the study of human health and disease. Overexpression of Polo like kinase 1 (PLK1) is associated with esophageal adenocarcinoma (OAC), however biological functions and molecular targets of PLK1 in OAC are still unknown. Objective: Here we performed integrative analysis of two “omics” data sources to reveal high-level interactions of PLK1 associated with OAC. Methods: Initially, quantitative gene expression (RPKM) was measured from transcriptomics data set of four OAC patients. In parallel, alteration in phosphorylation levels was evaluated in the proteomics data set (mass spectrometry) in OAC cell line (PLK1 inhibited). Next, two “omics” data sets were integrated and through comprehensive analysis possible true PLK1 targets that may serve as OAC biomarkers were assembled. Results: Through experimental validation, small ubiquitin-related modifier 1 (SUMO1) and heat shock protein beta-1 (HSPB1) were identified as novel phosphorylation targets of PLK1. Consequently in vivo, in situ and in silico experiments clearly demonstrated the interaction of PLK1 with putative novel targets (SUMO1 and HSPB1). Conclusion: Identification of a PLK1 dependent biosignature in OAC with high confidence in two omics levels proven the robustness and efficacy of our integrative approach.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3