Overcoming the Limitations of Therapeutic Strategies to Combat Pancreatic Cancer using Nanotechnology

Author:

Dhoundiyal Shivang1,Alam Md. Aftab1

Affiliation:

1. Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India

Abstract

Abstract: Resistance to conventional antitumour therapies and Hypoxia in patients with advanced solid tumours are two major reasons for the failure of conventional anti-tumour therapies. Therefore, it is important to find a new therapeutic method that can overcome these problems. An attenuated anaerobic bacterium, Clostridium novyi-NT, could target Hypoxic and Necrotic areas of tumours causing tumour lysis and stimulating a host anti-tumour immune response. To the best of our knowledge, the combination of bacterial anti-tumour therapy, chemotherapy, radiotherapy and immunotherapy may promote tumour regression, inhibit metastasis and develop a new strategy for the treatment of solid tumours. However, the possible molecular mechanisms of the combined therapies are still the biggest challenge. This review provides an overview of the history of bacterial cancer therapy and the development of a non-lethal strain of Clostridium novyi. Below is a precise definition of Hypoxic conditions in solid tumour tissue. To understand the anticancer effect of Clostridium novyi-NT spores, possible cell death mechanisms were summarised by the enzyme phospholipase C (nt01cx0979), which is secreted by Clostridium novyi-NT spores after germination in tumour tissue. The function of Clostridium novyi-NT spores in stimulating the host immune system to elicit anti-tumour responses was reviewed. Then, the results of anti-tumour combination therapies based on Clostridium novyi-NT spores were compiled. Identifying the molecular mechanisms of Clostridium novyi-NT in treating tumours and inducing cell death in invasive cancer cells, ultimately leading to tumour regression, may develop promising clinical strategies in the combined treatment of solid tumours.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3