Significant Role of MUC1 in Development of Resistance to Currently Existing Anti-cancer Therapeutic Agents

Author:

Farahmand Leila1,Merikhian Parnaz1,Jalili Neda1,Darvishi Behrad1,Majidzadeh-A Keivan1

Affiliation:

1. Recombinant Proteins Department, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran

Abstract

As an extensively glycosylated transmembrane protein of epithelium, Mucin1 (MUC1) mostly protects cells from tensions induced by external milieu. Physiologically, during stress condition, MUC1 separates into MUC1-N and MUC1-C moieties, resulting in transduction of inward survival signals, essential for maintaining cell's functionality. Recent studies have proposed a significant correlation between MUC1 overexpression and amplification of cancer cell’s proliferation and metastasis through modulation of multiple signaling pathways and cell-cell and cell-matrix interactions. It has been shown that MUC1- Cytoplasmic Domain (MUC1-CD) accelerates development of resistance to several anti-cancer therapeutic agents including bortezomib, trastuzumab and tamoxifen. Furthermore, MUC1-CD is also involved in promoting expression of multi drug resistance (MDR) genes and finally, silencing MUC1 expression was together with resensitization of human epidermal growth factor receptor 2 positive (HER2+) and/or estrogen receptor (ER+) positive breast cancer cells to bortezomib, trastuzumab and tamoxifen respectively. In this review, we briefly describe the role of MUC1 proto-oncogene in cancer cell’s survival, tumor progression and metastasis and then continue with mentioning the mechanisms through which MUC1 induce resistance to various currently existing therapeutic agents in market including bortezomib, trastuzumab and tamoxifen.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3