MALAT1 as a Versatile Regulator of Cancer: Overview of the Updates from Predatory Role as Competitive Endogenous RNA to Mechanistic Insights

Author:

Farooqi Ammad Ahmad1ORCID,Legaki Evangelia2,Gazouli Maria2,Rinaldi Silvia3,Berardi Rossana3

Affiliation:

1. Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan

2. Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece

3. Clinica Oncologica, Universita Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I – GM Lancisi – G Salesi di Ancona, via Conca 71, 60126 Ancona, Italy

Abstract

The central dogma of molecular biology, has remained a cornerstone of classical molecular biology. However, serendipitously discovered microRNAs (miRNAs) in nematodes paradigmatically shifted our current knowledge of the intricate mechanisms during transitions from transcription to translation. Thediscovery of miRNA captured considerable attention and appreciation, and we had witnessed an explosion in the field of non-coding RNAs. Ground-breaking discoveries in the field of non-coding RNAs have helped in better characterization of microRNAs and long noncoding RNAs (LncRNAs). There is an ever-increasing list of miRNA targets that are regulated by MALAT1 to stimulate or repress the expression of target genes. However, in this review, our main focus is to summarize mechanistic insights on MALAT1-mediated regulation of oncogenic signaling pathways. We have discussed how MALAT1 modulated TGF/SMAD and Hippo pathways in various cancers. We have also comprehensively summarized how JAK/STAT and Wnt/β-catenin pathways stimulated MALAT1 expression and consequentially how MALAT1 potentiated these signaling cascades to promote cancer. MALAT1 research has undergone substantial broadening. However, there is still a need to identify additional mechanisms. MALAT1 is involved in the multi- -layered regulation of multiple transduction cascades, and detailed analysis of different pathways will be advantageous in getting a step closer to individualized medicine.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3