Affiliation:
1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
Abstract
Background:
The side effects of drugs are not only harmful to humans but also the major
reasons for withdrawing approved drugs, bringing greater risks for pharmaceutical companies.
However, detecting the side effects for a given drug via traditional experiments is time- consuming
and expensive. In recent years, several computational methods have been proposed to predict the
side effects of drugs. However, most of the methods cannot effectively integrate the heterogeneous
properties of drugs.
Methods:
In this study, we adopted a network embedding method, Mashup, to extract essential and
informative drug features from several drug heterogeneous networks, representing different properties
of drugs. For side effects, a network was also built, from where side effect features were extracted.
These features can capture essential information about drugs and side effects in a network
level. Drug and side effect features were combined together to represent each pair of drug and side
effect, which was deemed as a sample in this study. Furthermore, they were fed into a random forest
(RF) algorithm to construct the prediction model, called the RF network model.
Results:
The RF network model was evaluated by several tests. The average of Matthews correlation
coefficients on the balanced and unbalanced datasets was 0.640 and 0.641, respectively.
Conclusion:
The RF network model was superior to the models incorporating other machine
learning algorithms and one previous model. Finally, we also investigated the influence of two feature
dimension parameters on the RF network model and found that our model was not very sensitive
to these parameters.
Funder
Science and Technology Commission of Shanghai Municipality
Natural Science Foundation of Shanghai
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献