Affiliation:
1. Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, 310013, China
Abstract
Background:
Gene Regulatory Network (GRN) inference algorithms aim to explore
casual interactions between genes and transcriptional factors. High-throughput transcriptomics
data including DNA microarray and single cell expression data contain complementary
information in network inference.
Objective:
To enhance GRN inference, data integration across various types of expression data
becomes an economic and efficient solution.
Method:
In this paper, a novel E-alpha integration rule-based ensemble inference algorithm is
proposed to merge complementary information from microarray and single cell expression data.
This paper implements a Gradient Boosting Tree (GBT) inference algorithm to compute
importance scores for candidate gene-gene pairs. The proposed E-alpha rule quantitatively
evaluates the credibility levels of each information source and determines the final ranked list.
Results:
Two groups of in silico gene networks are applied to illustrate the effectiveness of the
proposed E-alpha integration. Experimental outcomes with size50 and size100 in silico gene
networks suggest that the proposed E-alpha rule significantly improves performance metrics
compared with single information source.
Conclusion:
In GRN inference, the integration of hybrid expression data using E-alpha rule
provides a feasible and efficient way to enhance performance metrics than solely increasing
sample sizes.
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献