HSEAT: A Tool for Plant Heat Shock Element Analysis, Motif Identification and Analysis

Author:

Qazi Sarah Rizwan1,Haq Noor ul2,Ahmad Shakeel3,Shakeel Samina N.1

Affiliation:

1. Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University 45320, Islamabad, Pakistan

2. Department of Computer Science and Bioinformatics, Khushal Khan Khattak University 27200, Karak, Khyber-Pakhtunkhwa, Pakistan

3. Pakistan Institute of Science and Technology (PINSTECH), Nilore, Islamabad, Pakistan

Abstract

Background: Previous methods used to discover cis-regulatory motifs in promoter region of plant genes possess very limited performance, especially for analysis of novel and rare motifs. Different plant genes have differential expression under different environmental or experimental conditions and modular regulation of cis-regulatory sequences in promoter regions of the same or different genes. It has previously been revealed that Heat Shock Proteins (HSPs) creation is correlated with plant tolerance under heat and other stress conditions. Regulation of these HSP genes is controlled by interactions between heat shock factors (HSFs) with cis-acting motifs present in the promoter region of the genes. Differential expression of these HSP genes is because of their unique promoter architecture, cis-acting sequences and their interaction with HSFs. Objective: A versatile promoter analysis tool was proposed for identification and analysis of promoters of HSPs. Methods: Heat Shock Element Analysis Tool (HSEAT) has been implemented in java programming language using pattern recognition approach. This tool has build-in MS access database for storing different motifs. Results: HSEAT has been designed to detect different types of Heat Shock Elements (HSEs) in promoter regions of plant HSPs with integration of complete analysis of plant promoters to the tool. HSEAT is user-friendly, interactive application to discover various types of HSEs e.g. TTC Rich Types, Gap Types and Prefect HSE as well as STRE in HSPs. Here we examined and evaluated some known HSP promoters from different plants using this tool with already available tools. Conclusion: HSEAT has extensive potential to explore conserved or semi-conserved motifs or potential binding sites of different transcription factors for other stress regulating genes. This tool can be found at https://sourceforge.net/projects/heast/.

Funder

Higher Education Commission of Pakistan

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3