Analysis of Germin-like Protein Genes (OsGLPs) Family in Rice Using Various In silico Approaches

Author:

Ilyas Muhammad1,Irfan Muhammad1,Mahmood Tariq2,Hussain Hazrat3,Latif-ur-Rehman 3,Naeem Ijaz3,Khaliq-ur-Rahman 4

Affiliation:

1. Department of Botany, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan

2. Department of Botany, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan

3. Department of Biotechnology, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan

4. Department of Chemistry, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan

Abstract

Background: Germin-like Proteins (GLPs) play an important role in various stresses. Rice contains 43 GLPs, among which many remain functionally unexplored. The computational analysis will provide significant insight into their function. Objective: To find various structural properties, functional importance, phylogeny and expression pattern of all OsGLPs using various bioinformatics tools. Methods: Physiochemical properties, sub-cellular localization, domain composition, Nglycosylation and Phosphorylation sites, and 3D structural models of the OsGLPs were predicted using various bioinformatics tools. Functional analysis was carried out with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Blast2GO servers. The expression profile of the OsGLPs was predicted by retrieving the data for expression values from tissuespecific and hormonal stressed array libraries of RiceXPro. Their phylogenetic relationship was computed using Molecular and Evolutionary Genetic Analysis (MEGA6) tool. Results: Most of the OsGLPs are stable in the cellular environment with a prominent expression in the extracellular region (57%) and plasma membrane (33%). Besides, 3 basic cupin domains, 7 more were reported, among which NTTNKVGSNVTLINV, FLLAALLALASWQAI, and MASSSF were common to 99% of the sequences, related to bacterial pathogenicity, peroxidase activity, and peptide signal activity, respectively. Structurally, OsGLPs are similar but functionally they are diverse with novel enzymatic activities of oxalate decarboxylase, lyase, peroxidase, and oxidoreductase. Expression analysis revealed prominent activities in the root, endosperm, and leaves. OsGLPs were strongly expressed by abscisic acid, auxin, gibberellin, cytokinin, and brassinosteroid. Phylogenetically they showed polyphyletic origin with a narrow genetic background of 0.05%. OsGLPs of chromosome 3, 8, and 12 are functionally more important due to their defensive role against various stresses through co-expression strategy. Conclusion: The analysis will help to utilize OsGLPs in future food programs.

Funder

Higher Education Commission (HEC) of Pakistan

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3