Classifying Cognitive Normal and Early Mild Cognitive Impairment of Alzheimer’s Disease by Applying Restricted Boltzmann Machine to fMRI Data

Author:

Pei Shengbing1,Guan Jihong1

Affiliation:

1. Department of Computer Science and Technology, Tongji University, Shanghai, China

Abstract

Background: Neuroimaging is an important tool in early detection of Alzheimer’s disease (AD), which is a serious neurodegenerative brain disease among the elderly subjects. Independent component analysis (ICA) is arguably one of the most widely used algorithm for the analysis of brain imaging data, which can be used to extract intrinsic networks of brain from functional magnetic resonance imaging (fMRI). Method: Witnessed by recent studies, a more flexible model known as restricted Boltzmann machine (RBM) can also be used to extract spatial maps and time courses of intrinsic networks from resting state fMRI, moreover, RBM shows superior temporal features than ICA. Here, we seek to employ RBM to improve the performance of classifying individuals. Experiments are performed on healthy controls and subjects at the early stage of AD, i.e., cognitive normal (CN) and early mild cognitive impairment participants (EMCI), and two types of data, i.e., structural magnetic resonance imaging (sMRI) and fMRI data. Results: (1) By separately employing ICA for sMRI and fMRI, the features extracted from fMRI improve classification accuracy by 7.5% for CN and EMCI; (2) instead of applying ICA to fMRI, using RBM further improves classification accuracy by 7.75% for CN and EMCI; (3) the lesions at the early stage of AD are more likely to occur in the regions around slices 4, 6, 10, 14, 19, 51 and 59 of the whole brain in the longitudinal direction. Conclusion: By using fMRI instead of sMRI and RBM instead of ICA, we can classify CN and EMCI more efficiently.

Funder

Shanghai Municipal Commission of Economy and Informatization

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3