Affiliation:
1. State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
Abstract
Background:
The advancement of bioinformatics and machine learning has facilitated the
diagnosis of cancer and the discovery of omics-based biomarkers.
Objective:
Our study employed a novel data-driven approach to classifying the normal samples and
different types of gastrointestinal cancer samples, to find potential biomarkers for effective diagnosis
and prognosis assessment of gastrointestinal cancer patients.
Methods:
Different feature selection methods were used, and the diagnostic performance of the proposed
biosignatures was benchmarked using support vector machine (SVM) and random forest (RF)
models.
Results:
All models showed satisfactory performance in which Multilabel-RF appeared to be the best.
The accuracy of the Multilabel-RF based model was 83.12%, with precision, recall, F1, and Hamming-
Loss of 79.70%, 68.31%, 0.7357 and 0.1688, respectively. Moreover, proposed biomarker signatures
were highly associated with multifaceted hallmarks in cancer. Functional enrichment analysis and impact
of the biomarker candidates in the prognosis of the patients were also examined.
Conclusion:
We successfully introduced a solid workflow based on multi-label learning with High-
Throughput Omics for diagnosis of cancer and identification of novel biomarkers. Novel transcriptome
biosignatures that may improve the diagnostic accuracy in gastrointestinal cancer are introduced for
further validations in various clinical settings.
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献