Identification of Carcinogenic Chemicals with Network Embedding and Deep Learning Methods

Author:

Peng Xuefei1,Chen Lei1,Zhou Jian-Peng1

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Abstract

Background: Cancer is the second leading cause of human death in the world. To date, many factors have been confirmed to be the cause of cancer. Among them, carcinogenic chemicals have been widely accepted as the important ones. Traditional methods for detecting carcinogenic chemicals are of low efficiency and high cost. Objective: The aim of this study was to design an efficient computational method for the identification of carcinogenic chemicals. Methods: A new computational model was proposed for detecting carcinogenic chemicals. As a data-driven model, carcinogenic and non-carcinogenic chemicals were obtained from Carcinogenic Potency Database (CPDB). These chemicals were represented by features extracted from five chemical networks, representing five types of chemical associations, via a network embedding method, Mashup. Obtained features were fed into a powerful deep learning method, recurrent neural network, to build the model. Results: The jackknife test on such model provided the F-measure of 0.971 and AUROC of 0.971. Conclusion: The proposed model was quite effective and was superior to the models with traditional machine learning algorithms, classic chemical encoding schemes or direct usage of chemical associations.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3