Delineating Characteristic Sequence and Structural Features of Precursor and Mature Piwi-interacting RNAs of Epithelial Ovarian Cancer

Author:

Singh Garima1,Swain Arpit Chandan2,Mallick Bibekanand1ORCID

Affiliation:

1. RNAi and Functional Genomics Lab., National Institute of Technology Rourkela, Rourkela-769008, Odisha, India

2. Department of Biology, Utrecht University, Utrecht, Netherlands

Abstract

Background: Piwi-interacting RNAs (piRNAs) are an amazing class of small noncoding RNAs (sncRNAs) known for its promising role in germline and somatic cells. Myriad functional studies have been performed to unveil the true potential of this class of ncRNAs; however, global features encoded in their sequence and structure have not been explored. Objectives: We aim to identify the sequence and structural level characteristic features of piRNAs of normal ovary (NO), and two subtypes of epithelial ovarian cancer (EOCa)- endometrioid (ENOCa), and serous ovarian cancer (SOCa) that we had reported earlier and their precursors. Methods: We have performed sequence analysis of mature piRNAs and their upstream/downstream regions as well as structural analysis of precursor piRNAs (pre-piRNAs) by examining their minimal folding energy (MFE), adjusted minimal folding energy (AMFE) and minimal folding energy index (MFEI) etc using in silico approaches. Results: We observed enrichment of U at first position and G at several other positions of mature piRNAs, which might be associated with the processing of mature piRNAs similar to what is seen in the case of miRNAs and strong target binding, respectively. In addition, we found the richness of AU in and around 20 nts upstream and downstream of precursor piRNAs (pre-piRNAs). This characteristic feature of pre-piRNAs possibly contributes to lower MFE compared to random sequences and make its secondary structure less stable which decides biogenesis of piRNAs. We also noticed that MFE, AMFE and MFEI of pre-piRNAs are comparatively less than pre-miRNAs of metazoans, plants and viruses reported in other studies, which clearly discriminate pre-piRNAs from other RNA sequences including pre-miRNAs of other organisms. Conclusion: In summary, the present study reveals key characteristic features encoded within and around mature piRNAs as well as pre-piRNAs of NO and EOCa samples that distinguish piRNAs from miRNAs and other random RNA sequences. These findings might act as a cornerstone for better understanding of biogenesis and function of piRNAs as well as will aid in easier identification of new piRNAs from unknown stretch of sequences using the characteristic features.

Funder

Department of Biotechnology, Govt. of India

Council of Scientific and Industrial Research (CSIR), Govt. of India

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3