A Machine Learning-based Self-risk Assessment Technique for Cervical Cancer

Author:

Ramzan Zeeshan1,Hassan Muhammad Awais1,Asif H. M. Shahzad1,Farooq Amjad1

Affiliation:

1. Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan

Abstract

Background: Cervical cancer is a highly significant cause of mortality in developing countries, and it is one of the most prominent forms of cancer worldwide. Machine learning techniques have been proven more accurate for the identification of cervical cancer as compared to the manual screening methods like Pap smear and Liquid Cytology Based (LCB) tests. Objective: Primarily, these machine-learning techniques use the images of the cervix for cervical cancer risk analysis; in this article, demographic data and medical records of patients are used to identify major causes of cervical cancer. Furthermore, normal classification methods are used as a usual way of classification when the dataset is balanced as this dataset has abundant examples of negative cases as compared to positive cases On the other hand, traditional binary class classifiers are not sufficient to classify the examples of cervical cancer correctly. Methods: We identified the major causes of cervical cancer by employing multiple machine learning feature selection algorithms. After this selection, we trained different machine learning methods including Decision Trees (DTs), Support Vector Machines (SVMs) and Ensemble Learners using all features as well as these important features. Results and Conclusion: AdaBoost is able to classify instances into healthy and unhealthy classes of this unbalanced dataset with 96% accuracy. Based on this model and significant causes of cervical cancer, we aimed to develop a technique for self-risk assessment of cervical cancer, which women can use to know their chances of being infected from cervical cancer after answering some questions about their demographics and medical history.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3