Analysis of Codon Usage Patterns in the Human Papillomavirus Oncogenes

Author:

Cho Myeongji1,Kim Hayeon2,Je Mikyeong1,Son Hyeon S.1ORCID

Affiliation:

1. Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea

2. Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695, Korea

Abstract

Background: Persistent high-risk genital human papillomavirus (HPV) infection is a major cause of cervical cancer in women. The products of the viral transforming genes E6 and E7 in the high-risk HPVs are known to be similar in their amino acid composition and structure. We performed a comparative analysis of codon usage patterns in the E6 and E7 genes of HPVs. Methods: The E6 and E7 gene sequences of eight HPV subtypes were analyzed to determine their nucleotide composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), neutrality, genetic variability, selection pressure, and codon adaptation index (CAI). Additionally, a correspondence analysis (CoA) was performed. Results: The analysis to determine the effects of differences in composition on the codon usage patterns revealed that there may be usage bias for ‘A’ nucleotides. This was consistent with the results of the RSCU analysis, which demonstrated that the selection of A/T-rich patterns and the preference for A/T-ended codons in HPVs are influenced by compositional constraints. Moreover, the results reveal that selection pressure plays an important role in the CoA results for the RSCU values, Tajima’s D tests, and neutrality tests. Conclusion: The results of this study are consistent with previous findings that most papillomavirus genes are under purifying selection pressure, which limits changes to the encoded proteins. Natural selection and mutation pressures resulting in changes in the nucleotide composition and codon usage bias in the two tumor genes of HPV act differently during the evolution of the HPV subtype; thus, throughout the viral life cycle, HPV can constantly evolve to adapt to a new environment.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3