Rosetta and the Journey to Predict Proteins’ Structures, 20 Years on

Author:

Abbass Jad1,Nebel Jean-Christophe2ORCID

Affiliation:

1. Department of Computer Science, Lebanese International University, Bekaa, Lebanon

2. Faculty of Science, Engineering and Computing, Kingston University, London, KT1 2EE, United Kingdom

Abstract

For two decades, Rosetta has consistently been at the forefront of protein structure prediction. While it has become a very large package comprising programs, scripts, and tools, for different types of macromolecular modelling such as ligand docking, protein-protein docking, protein design, and loop modelling, it started as the implementation of an algorithm for ab initio protein structure prediction. The term ’Rosetta’ appeared for the first time twenty years ago in the literature to describe that algorithm and its contribution to the third edition of the community wide Critical Assessment of techniques for protein Structure Prediction (CASP3). Similar to the Rosetta stone that allowed deciphering the ancient Egyptian civilisation, David Baker and his co-workers have been contributing to deciphering ’the second half of the genetic code’. Although the focus of Baker’s team has expended to de novo protein design in the past few years, Rosetta’s ‘fame’ is associated with its fragment-assembly protein structure prediction approach. Following a presentation of the main concepts underpinning its foundation, especially sequence-structure correlation and usage of fragments, we review the main stages of its developments and highlight the milestones it has achieved in terms of protein structure prediction, particularly in CASP.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3