Affiliation:
1. Department of Computer Science, Lebanese International University, Bekaa, Lebanon
2. Faculty of Science, Engineering and Computing, Kingston University, London, KT1 2EE, United Kingdom
Abstract
For two decades, Rosetta has consistently been at the forefront of protein structure
prediction. While it has become a very large package comprising programs, scripts, and tools, for
different types of macromolecular modelling such as ligand docking, protein-protein docking,
protein design, and loop modelling, it started as the implementation of an algorithm for ab initio
protein structure prediction. The term ’Rosetta’ appeared for the first time twenty years ago in the
literature to describe that algorithm and its contribution to the third edition of the community wide
Critical Assessment of techniques for protein Structure Prediction (CASP3). Similar to the Rosetta
stone that allowed deciphering the ancient Egyptian civilisation, David Baker and his co-workers
have been contributing to deciphering ’the second half of the genetic code’. Although the focus of
Baker’s team has expended to de novo protein design in the past few years, Rosetta’s ‘fame’ is
associated with its fragment-assembly protein structure prediction approach. Following a
presentation of the main concepts underpinning its foundation, especially sequence-structure
correlation and usage of fragments, we review the main stages of its developments and highlight
the milestones it has achieved in terms of protein structure prediction, particularly in CASP.
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献