Graph Convolutional Neural Network with Multi-Layer Attention Mechanism for Predicting Potential Microbe-Disease Associations

Author:

Wang Lei12ORCID,Yang Xiaoyu12,Kuang Linai2,Zhang Zhen1,Zeng Bin1,Chen Zhiping1

Affiliation:

1. School of Computer Science and Engineering, Changsha University, Changsha, 410022, China

2. Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, China

Abstract

Background: Human microbial communities play an important role in some physiological process of human beings. Nevertheless, the identification of microbe-disease associations through biological experiments is costly and time-consuming. Hence, the development of calculation models is meaningful to infer latent associations between microbes and diseases. Aims: In this manuscript, we aim to design a computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to infer latent microbe-disease associations. Objective: This study aims to propose a novel computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to detect potential microbedisease associations. Methods: In GCNMA, the known microbe-disease association network was first integrated with the microbe- microbe similarity network and the disease-disease similarity network into a heterogeneous network first. Subsequently, the graph convolutional neural network was implemented to extract embedding features of each layer for microbes and diseases respectively. Thereafter, these embedding features of each layer were fused together by adopting the multi-layer attention mechanism derived from the graph convolutional neural network, based on which, a bilinear decoder would be further utilized to infer possible associations between microbes and diseases. Results: Finally, to evaluate the predictive ability of GCNMA, intensive experiments were done and compared results with eight state-of-the-art methods which demonstrated that under the frameworks of both 2-fold cross-validations and 5-fold cross-validations, GCNMA can achieve satisfactory prediction performance based on different databases including HMDAD and Disbiome simultaneously. Moreover, case studies on three kinds of common diseases such as asthma, type 2 diabetes, and inflammatory bowel disease verified the effectiveness of GCNMA as well. Conclusion: GCNMA outperformed 8 state-of-the-art competitive methods based on the benchmarks of both HMDAD and Disbiome.

Funder

National Natural Science Foundation of China

Key Project of Changsha Science and Technology Plan

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3