Revealing ANXA6 as a Novel Autophagy-related Target for Pre-eclampsia Based on the Machine Learning

Author:

Zhu Baoping1,Geng Huizhen1,Yang Fan2,Wu Yanxin3,Cao Tiefeng3,Wang Dongyu3,Wang Zilian3

Affiliation:

1. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

2. Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.

3. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

Abstract

Background: Preeclampsia (PE) is a severe pregnancy complication associated with autophagy. Objective: This research sought to uncover autophagy-related genes in pre-eclampsia through bioinformatics and machine learning. Methods: GSE75010 from the GEO series was subjected to WGCNA to identify key modular genes in PE. Autophagy genes retrieved from the THANATOS overlapped with the modular genes to yield PE-related autophagy genes. Furthermore, the crucial step involved the utilization of two machine learning algorithms (LASSO and SVM-RFE) for dimensionality reduction. The candidate gene was further verified by quantitative reverse transcription polymerase chain reaction, western blot, and immunohistochemistry. Preliminary experiments were conducted on HTR-8/SVneo cell lines to explore the role of candidate genes in autophagy regulation. Results: WGCNA identified 291 genes from 5 hubs, and after overlapping with 1087 autophagy-related genes obtained from THANATOS, 42 PE-related ARGs were identified. ANXA6 was recognized as a potential target through SVM-RFE and LASSO analyses. The mRNA and protein expression of ANXA6 were verified in placenta samples. In HTR8/SVneo cells, modulating ANXA6 expression altered autophagy levels. Knocking down ANXA6 resulted in an anti-autophagy effect, which was reversed by treatment with CAL101, an inhibitor of PI3K, Akt, and mTOR. Conclusion: We observed that ANXA6 may serve as a possible PE action target and that autophagy may be crucial to the pathogenesis of PE.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3