A Skin Cancer Detector Based on Transfer Learning and Feature Fusion

Author:

Cai Hongguo12,Brinti Hussin Norriza2,Lan Huihong1,Li Hong23

Affiliation:

1. Department of Mathematics and Computer Science, Nanning Normal University, Nanning, 530023, Guangxi, China

2. Faculty of Engineering, Built Environment and Information Technology, SEGi University, Petaling Jaya, 47810, Selangor, Malaysia

3. College of Information Engineering, Pingdingshan University, Pingdingshan, 467000, Henan, China

Abstract

Background: With the rapid development of advanced artificial intelligence technologies which have been applied in varying types of applications, especially in the medical field. Cancer is one of the biggest problems in medical sciences. If cancer can be detected and treated early, the possibility of a cure will be greatly increased. Malignant skin cancer is one of the cancers with the highest mortality rate, which cannot be diagnosed in time only through doctors’ experience. We can employ artificial intelligence algorithms to detect skin cancer at an early stage, for example, patients are determined whether suffering from skin cancer by detecting skin damage or spots. Objective: We use the real HAM10000 image dataset to analyze and predict skin cancer. Methods: (1) We introduce a lightweight attention module to discover the relationships between features, and we fine-tune the pre-trained model (i.e., ResNet-50) on the HAM10000 dataset to extract the hidden high-level features from the images; (2) we integrate these high-level features with generic statistical features, and use the SMOTE oversampling technique to augment samples from the minority classes; and (3) we input the augmented samples into the XGBoost model for training and predicting. Results: The experimental results show that the accuracy, sensitivity, and specificity of the proposed SkinDet (Skin cancer detector based on transfer learning and feature fusion) model reached 98.24%, 97.84%, and 98.13%. The proposed model has stronger classification capability for the minority classes, such as dermato fibroma and actinic keratoses. Conclusion: SkinDet contains a lightweight attention module and can extract the hidden high-level features of the images by fine-tuning the pretrained model on the skin cancer dataset. In particular, SkinDet integrates high-level features with statistical features and augments samples of these minority classes. Importantly, SkinDet can be applied to classify the samples into minority classes.

Funder

National Natural Science Foundation of China

“BAGUI Scholar” Program of Guangxi Zhuang Autonomous Region of China

Improving Scientific Research Ability of Young and Middle aged Teachers in Guangxi Universities

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3