A Metric to Characterize Differentially Methylated Region Sets Detected from Methylation Array Data

Author:

Peng Xiaoqing1,Cui Wanxin1,Zhang Wenjin1,Li Zihao1,Zhu Xiaoshu1,Yuan Ling1,Li Ji1

Affiliation:

1. Department of Hematology, the Second Xiangya hospital of Central South University, 410012, Changsha, China

Abstract

background: Identifying differentially methylated region (DMR) is a basic but important task in epigenomics, which can help investigate the mechanisms of diseases and provide methylation biomarkers for screening diseases. A set of methods have been proposed to identify DMRs from methylation array data. However, it lacks effective metrics to characterize different DMR sets and enable a straight way for comparison. method: In this study, we introduce a metric, DMRn, to characterize DMR sets detected by different methods from methylation array data. To calculate DMRn, firstly, the methylation differences of DMRs are recalculated by incorporating the correlations between probes and their represented CpGs. Then, DMRn is calculated based on the number of probes and the dense of CpGs in DMRs with methylation differences falling in each interval. Result & Discussion: By comparing the DMRn of DMR sets predicted by seven methods on four scenario, the results demonstrate that DMRn can make an efficient guidance for selecting DMR sets, and provide new insights in cancer genomics studies by comparing the DMR sets from the related pathological states. For example, there are many regions with subtle methylation alteration in subtypes of prostate cancer are altered oppositely in the benign state, which may indicate a possible revision mechanism in benign prostate cancer. conclusion: Futhermore, when applied to datasets that underwent different runs of batch effect removal, the DMRn can help to visualize the bias introduced by multi-runs of batch effect removal. The tool for calculating DMRn is available in the GitHub repository(https://github.com/xqpeng/DMRArrayMetric).

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3