Drug Design and Disease Diagnosis: The Potential of Deep Learning Models in Biology

Author:

Sreeraman Sarojini12,Kannan Mayuri P.12,Singh Kushwah Raja Babu2ORCID,Sundaram Vickram1,Veluchamy Alaguraj3ORCID,Thirunavukarasou Anand2ORCID,Saravanan Konda Mani2ORCID

Affiliation:

1. Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical, and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India

2. B-Aatral Biosciences Private Limited, Bangalore, 560091, Karnataka, India

3. Department of Computational Biology, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, 38105, TN, United States

Abstract

Abstract: Early prediction and detection enable reduced transmission of human diseases and provide healthcare professionals ample time to make subsequent diagnoses and treatment strategies. This, in turn, aids in saving more lives and results in lower medical costs. Designing small chemical molecules to treat fatal disorders is also urgently needed to address the high death rate of these diseases worldwide. A recent analysis of published literature suggested that deep learning (DL) based models apply more potential algorithms to hybrid databases of chemical data. Considering the above, we first discussed the concept of DL architectures and their applications in drug development and diagnostics in this review. Although DL-based approaches have applications in several fields, in the following sections of the article, we focus on recent developments of DL-based techniques in biology, notably in structure prediction, cancer drug development, COVID infection diagnostics, and drug repurposing strategies. Each review section summarizes several cutting-edge, recently developed DL-based techniques. Additionally, we introduced the approaches presented in our group, whose prediction accuracy is relatively comparable with current computational models. We concluded the review by discussing the benefits and drawbacks of DL techniques and outlining the future paths for data collecting and developing efficient computational models.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3