Development and Study of a Knowledge Graph for Retrieving the Relationship Between BVDV and Related Genes

Author:

Bai Yunli1ORCID,Zhou Weiguang2,Lv Jia1,Chang Lu1,Li Yingfei1,Wang Rulin1

Affiliation:

1. College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China

2. College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China

Abstract

Background: Bovine viral diarrhea virus (BVDV) can cause diarrhea, abortion, and immunosuppression in cattle, imposing huge economic losses for the global cattle industry. The pathogenic and immune mechanisms of BVDV remain elusive. The development of a BVDV-gene knowledge base can provide clues to reveal the interaction of BVDV with host cells. However, the traditional method of manually establishing a knowledge base is time-consuming and inefficient. The method of developing a knowledge base based on deep learning has noticeably attracted scholars' attention recently. Objective: The study aimed to explore the substitution of deep learning for manual mining of BVDVrelated genes and to develop a knowledge graph of the relationship between BVDV and related genes. Methods: A deep learning-based biomedical knowledge graph development method was proposed, which used deep learning to mine biomedical knowledge, model BVDV and various gene concepts, and store data in a graphical database. First, the PubMed database was used as the data source and crawler technology to obtain abstract data on the relationship between BVDV and various host genes. Pretrained BioBERT model was used for biomedical named entity recognition to obtain all types of gene entities, and the pre-trained BERT model was utilized for relationship extraction to achieve the relationship between BVDV and various gene entities. Then, it was combined with manual proofreading to obtain structured triple data with high accuracy. Finally, the Neo4j graph database was used to store data and to develop the knowledge graph of the relationship between BVDV and related genes. Results: The results showed the obtainment of 71 gene entity types, including PRL4, MMP-7, TGIF1, etc. 9 relation types of BVDV and gene entities were obtained, including "can downregulate expression of", "can upregulate expression of", "can suppress expression of", etc. The knowledge graph was developed using deep learning to mine biomedical knowledge combined with manual proofreading, which was faster and more efficient than the traditional method of establishing knowledge base manually, and the retrieval of semantic information by storing data in graph database was also more efficient. Conclusion: A BVDV-gene knowledge graph was preliminarily developed, which provided a basis for studying the interaction between BVDV and host cells.

Funder

Inner Mongolia Autonomous Region Science and Technology Major Project

Natural Science Foundation of Inner Mongolia of China

Higher Education Research Project of Inner Mongolia of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3