MaxDEL: Accurate and Efficient Calling of Genomic Deletions from Single Molecular Real-time Sequencing Using Integrated Method

Author:

Yu Xinyu1ORCID,Lv Yaoxian1,Cai Lei1,Gao Jingyang1ORCID

Affiliation:

1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China

Abstract

Background: Single-molecule real-time (SMRT) sequencing data are characterized by long read length and high read depth. Compared to next-generation sequencing (NGS), SMRT sequencing data can present more structural variations (SVs) and have greater advantages in calling variation. However, there are high sequencing errors and noises in SMRT sequencing data, which causes inaccuracy in calling SVs from sequencing data. Most existing tools cannot overcome sequencing errors and detect genomic deletions. Objective: In this investigation, we propose a new method for calling deletions from SMRT sequencing data called MaxDEL. Methods: Firstly, MaxDEL uses a machine learning method to calibrate the deletion regions from the variant call format (VCF) file. Secondly, it develops a novel feature visualization method to convert the variant features to images and uses these images to accurately call the deletions based on a convolutional neural network (CNN). Results: The result shows that MaxDEL performs better in terms of accuracy and recall for calling variants when compared to existing methods in both real data and simulative data. Conclusion: MaxDEL can effectively overcome SMRT sequencing data's noise and integrate new machine learning and deep learning technologies. The method can capture the variant features of the deletions and establish the learning model between images and gene data. In our experiment, the MaxDEL method is superior to NextSV, SVIM, Sniffles, Picky and SMRT-SV, especially in recall and F1-score.

Funder

Beijing Natural Science Foundation, China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3