Refining Protein Interaction Network for Identifying Essential Proteins

Author:

Zhang Houwang1,Feng Zhenan2,Wu Chong1

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China

2. School of Automation, China University of Geosciences, Wuhan, 430074, China

Abstract

Aim: The study aimed to reconstruct the protein-protein interaction network for the identification of essential proteins. Background: In a living organism, essential proteins play an indispensable role in its survival and development. Hence, how to identify essential proteins from the protein interaction network (PIN) has become a hot topic in the field of bioinformatics. However, existing methods’ accuracies for identifying essential proteins are still limited due to the false positives of the protein-protein interaction data. Objective: The objective of the study was to propose an efficient algorithm for the reconstruction of a protein-protein interaction network. Methods: In this paper, a method for the refinement of PIN based on three kinds of biological data (subcellular localization data, protein complex data, and gene expression data) is proposed. Through evaluating each interaction within the original PIN, a refined clean PIN could be obtained. To verify the effectiveness of the refined PIN for the identification of essential proteins, we applied eight networkbased essential protein discovery methods (DC, BC, CC, LC, HC, SC, LAC, and NC) to it. Result: Based on the obtained experimental results, we demonstrated that the precision for identifying essential proteins could be greatly improved by refining the original PIN using our method. Conclusion: Our method could effectively enhance the protein-protein interaction network and improve the accuracy of identifying essential proteins. In the future, we plan to integrate more biological information to enhance our refinement method and apply it to more species and more PIN-based discovery tasks, like the identification of protein complexes or functional modules.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3