Identification of Plasmodium Secreted Proteins Based on MonoDiKGap and Distance-Based Top-n-Gram Methods

Author:

Liao Xinyi1,Gu Xiaomei234ORCID,Peng Dejun234

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang, China

2. Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China

3. Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China

4. School of Mathematics and Statistics, Hainan Normal University, Haikou, China

Abstract

Background: Many malarial infections are caused by Plasmodium falciparum. Accurate classification of the proteins secreted by the malaria parasite, which are essential for the development of anti-malarial drugs, is necessary Objective: This study aimed at accurately classifying the proteins secreted by the malaria parasite Methods: Therefore, in order to improve the accuracy of the prediction of Plasmodium secreted proteins, we established a classification model MGAP-SGD. MonodikGap features (k=7) of the secreted proteins were extracted, and then the optimal features were selected by the AdaBoost method. Finally, based on the optimal set of secreted proteins, the model was used to predict the secreted proteins using the Stochastic Gradient Descent (SGD) algorithm Results: We used a 10-fold cross-validation set and independent test set in the stochastic gradient descent (SGD) classifier to validate the model, and the accuracy rates were found to be 98.5859% and 97.973%, respectively. Results: We used a 10-fold cross-validation set and independent test set in the stochastic gradient descent (SGD) classifier to validate the model, and the accuracy rates were found to be 98.5859% and 97.973%, respectively Conclusion: This study confirms the effectiveness and robustness of the prediction results of the MGAP-SGD model that can meet the prediction requirements of the secreted proteins of Plasmodium

Funder

National Nature Science Foundation of China

National Key R&D Program of China

Natural Science Foundation of Hainan, China

Innovative scientific research projects for graduate students in Hainan Province

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3