Predicting COVID-19 Severity Integrating RNA-Seq Data Using Machine Learning Techniques

Author:

Rojas Ignacio1ORCID,Bajo-Morales Javier12,Castillo-Secilla Daniel13,Herrera Luis Javier1ORCID,Caba Octavio4ORCID,Prados Jose Carlos4ORCID

Affiliation:

1. Department of Computer Architecture and Technology, University of Granada, C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain

2. Deuser Tech Group, Calle Islandia, 182-NAV 24A, Córdoba, 14014, Córdoba; Spain

3. Fujitsu Technology Solutions S.A, CoE Data Intelligence, Camino del Cerro de los Gamos, 1, Pozuelo de Alarcón, 28224, Madrid, Spain

4. Nuclear Medicine Department, IMIBIC, University Hospital Reina Sofia, Menéndez Pidal Avenue, 14004, Córdoba, Spain

Abstract

Abstract: A fundamental challenge in the fight against COVID -19 is the development of reliable and accurate tools to predict disease progression in a patient. This information can be extremely useful in distinguishing hospitalized patients at higher risk for needing UCI from patients with low severity. How SARS-CoV-2 infection will evolve is still unclear. Methods: A novel pipeline was developed that can integrate RNA-Seq data from different databases to obtain a genetic biomarker COVID -19 severity index using an artificial intelligence algorithm. Our pipeline ensures robustness through multiple cross-validation processes in different steps. Results: CD93, RPS24, PSCA, and CD300E were identified as a COVID -19 severity gene signature. Furthermore, using the obtained gene signature, an effective multi-class classifier capable of discriminating between control, outpatient, inpatient, and ICU COVID -19 patients was optimized, achieving an accuracy of 97.5%. Conclusion: In summary, during this research, a new intelligent pipeline was implemented with the goal of developing a specific gene signature that can detect the severity of patients suffering COVID -19. Our approach to clinical decision support systems achieved excellent results, even when processing unseen samples. Our system can be of great clinical utility for the strategy of planning, organizing and managing human and material resources, as well as for automatically classifying the severity of patients affected by COVID -19.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3