Densely Dilated Spatial Pooling Convolutional Network Using Benign Loss Functions for Imbalanced Volumetric Prostate Segmentation

Author:

Liu Qiuhua1,Fu Min1,Jiang Hao1,Gong Xinqi1ORCID

Affiliation:

1. Institute for Mathematical Sciences, School of Math, Renmin University of China, Math, China

Abstract

Background: The high incidence rate of prostate disease poses a requirement of accurate early detection. Magnetic Resonance Imaging (MRI) is one of the main imaging methods used for prostate cancer detection so far, but it has problems of imbalance and variation in appearance, therefore, automated prostate segmentation is still challenging. Objective: Aiming to accurately segment the prostate from MRI, the focus was on designing a unique network with benign loss functions. Methods: A novel Densely Dilated Spatial Pooling Convolutional Network (DDSP ConNet) in an encoderdecoder structure, with a unique DDSP block was proposed. By densely combining dilated convolution and global pooling layers, the DDSP block supplies coarse segmentation results and preserves hierarchical contextual information. Meanwhile, the DSC and Jaccard loss were adopted to train the DDSP ConNet. And it was proved theoretically that they have benign properties, including symmetry, continuity, and differentiability on the parameters of the network. Results: Extensive experiments have been conducted to corroborate the effectiveness of the DDSP ConNet with DSC and Jaccard loss on the MICCAI PROMISE12 challenge dataset. In the test dataset, the DDSP ConNet achieved a score of 85.78. Conclusion: In the conducted experiments, DDSP network with DSC and Jaccard loss outperformed most of the other competitors on the PROMISE12 dataset. Therefore, it has a better ability to extract hierarchical features and solve the imbalanced medical image problem.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Reference22 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3