Classification of Chromosomal DNA Sequences Using Hybrid Deep Learning Architectures

Author:

Du Zhihua1,Xiao Xiangdong1,Uversky Vladimir N.2

Affiliation:

1. Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, China

2. Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, Florida, (V.N.U.), United States

Abstract

Background: Chromosomal DNA contains most of the genetic information of eukaryotes and plays an important role in the growth, development and reproduction of living organisms. Most chromosomal DNA sequences are known to wrap around histones, and distinguishing these DNA sequences from ordinary DNA sequences is important for understanding the genetic code of life. The main difficulty behind this problem is the feature selection process. DNA sequences have no explicit features, and the common representation methods, such as onehot coding, introduced the major drawback of high dimensionality. Recently, deep learning models have been proved to be able to automatically extract useful features from input patterns. Objective: We aim to investigate which deep learning networks could achieve notable improvements in the field of DNA sequence classification using only sequence information. Methods: In this paper, we present four different deep learning architectures using convolutional neural networks and long short-term memory networks for the purpose of chromosomal DNA sequence classification. Natural language model Word2vec was used to generate word embedding of sequence and learn features from it by deep learning. Results: The comparison of these four architectures is carried out on 10 chromosomal DNA datasets. The results show that the architecture of convolutional neural networks combined with long short-term memory networks is superior to other methods with regards to the accuracy of chromosomal DNA prediction. Conclusion: In this study, four deep learning models were compared for an automatic classification of chromosomal DNA sequences with no steps of sequence preprocessing. In particular, we have regarded DNA sequences as natural language and extracted word embedding with Word2Vec to represent DNA sequences. Results show a superiority of the CNN+LSTM model in the ten classification tasks. The reason for this success is that the CNN module captures the regulatory motifs, while the following LSTM layer captures the long-term dependencies between them.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3