Affiliation:
1. College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China
2. School of Information Technology, Henan University of Chinese Medicine, Zhengzhou, 450046, China
Abstract
Background:
Cancer threatens human health seriously. Diagnosing cancer via gene expression
analysis is a hot topic in cancer research.
Objective:
The study aimed to diagnose the accurate type of lung cancer and discover the pathogenic
genes.
Methods:
In this study, Affinity Propagation (AP) clustering with similarity score was employed
to each type of lung cancer and normal lung. After grouping genes, sparse group lasso was adopted
to construct four binary classifiers and the voting strategy was used to integrate them.
Results:
This study screened six gene groups that may associate with different lung cancer subtypes
among 73 genes groups, and identified three possible key pathogenic genes, KRAS, BRAF
and VDR. Furthermore, this study achieved improved classification accuracies at minority classes
SQ and COID in comparison with other four methods.
Conclusion:
We propose the AP clustering based sparse group lasso (AP-SGL), which provides
an alternative for simultaneous diagnosis and gene selection for lung cancer.
Funder
Foundation for University Young Key Teacher of Henan Province
Scientific Research Project of Zhengzhou
Foundation of Henan Educational Committee
Natural Science Foundation of Henan Province
Scientific and Technological Project of Henan Province
Natural Science Foundation of China
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献