Citrullination Site Prediction by Incorporating Sequence Coupled Effects into PseAAC and Resolving Data Imbalance Issue

Author:

Hasan Md. Al Mehedi1ORCID,Ben Islam Md Khaled2ORCID,Rahman Julia1ORCID,Ahmad Shamim3ORCID

Affiliation:

1. Department of Computer Science & Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh

2. Department of Computer Science & Engineering, Pabna University of Science and Technology, Pabna, Bangladesh

3. Department of Computer Science & Engineering, Rajshahi University, Rajshahi, Bangladesh

Abstract

Background: Post-translational modification is one of the bio-molecular mechanisms in living organisms, which incorporate functional diversity in proteins as well as regulate cellular processes. Transformation of arginine residue to citrulline in protein is such a modification. Objective: Our objective is to identify citrullinated arginine residue sites quickly and accurately. Methods: In this study, a novel computational tool, abbreviated as predCitru-Site, has been developed to predict citrullination sites. This technique effectively has incorporated the sequencecoupling effect of surrounding amino acids of arginine residues as well as optimizes skewed training citrullination dataset for prediction quality improvement. The performance of predCitru- Site has been measured from the average of 5 complete runs of the 10-fold cross-validation test to comply with existing tools. Results and Conclusion: predCitru-Site has achieved 97.6% sensitivity, 98.9% specificity, and overall accuracy of 98.5%. With Matthew’s correlation coefficient of 0.967, it has also shown an area under the receiver operator characteristics curve of 0.997. Compared with existing tools, predCitru-Site significantly outperforms on the same benchmark dataset. It also shows significant improvement in the case of independent tests in all performance metrics (around 50% higher in AUC). These results suggest that our method is promising and can be used as a complementary technique for fast exploration of citrullination in arginine residue. A user-friendly web server has also been deployed at http://research.ru.ac.bd/predCitru-Site/ for the convenience of experimental scientists.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3