Analysis and Comparison of RNA Pseudouridine Site Prediction Tools

Author:

Chen Wei1,Liu Kewei1

Affiliation:

1. School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China

Abstract

Background:Pseudouridine (Ψ) is the most abundant RNA modification and has important functions in a series of biological and cellular processes. Although experimental techniques have made great contributions to identify Ψ sites, they are still labor-intensive and costineffective. In the past few years, a series of computational approaches have been developed, which provided rapid and efficient approaches to identify Ψ sites.Results:To provide the readership with a clear landscape about the recent development in this important area, in this review, we summarized and compared the representative computational approaches developed for identifying Ψ sites. Moreover, future directions in computationally identifying Ψ sites were discussed as well.Conclusion:We anticipate that this review will provide novel insights into the researches on pseudouridine modification.

Funder

National Nature Scientific Foundation of China

Natural Science Foundation for Distinguished Young Scholar of Hebei Province

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3