Gene Regulatory Network Construction Based on a Particle Swarm Optimization of a Long Short-term Memory Network

Author:

Tang Zhenhao1ORCID,Chai Xiangying1,Wang Yu1,Cao Shengxian1

Affiliation:

1. School of Automation Engineering, Northeast Electric Power University, Jilin, China

Abstract

Background: The Gene Regulatory Network (GRN) is a model for studying the function and behavior of genes by treating the genome as a whole, which can reveal the gene expression mechanism. However, due to the dynamics, nonlinearity, and complexity of gene expression data, it is a challenging task to construct a GRN precisely. And in the circulating cooling water system, the Slime-Forming Bacteria (SFB) is one of the bacteria that helps to form dirt. In order to explore the microbial fouling mechanism of SFB, constructing a GRN for the fouling-forming genes of SFB is significant. Objective: Propose an effective GRN construction method and construct a GRN for the foulingforming genes of SFB. Methods: In this paper, a combination method of Long Short-Term Memory Network (LSTM) and Mean Impact Value (MIV) was applied for GRN reconstruction. Firstly, LSTM was employed to establish a gene expression prediction model. To improve the performance of LSTM, a Particle Swarm Optimization (PSO) was introduced to optimize the weight and learning rate. Then, the MIV was used to infer the regulation among genes. In view of the fouling-forming problem of SFB, we have designed electromagnetic field experiments and transcriptome sequencing experiments to locate the fouling-forming genes and obtain gene expression data. Results: In order to test the proposed approach, the proposed method was applied to three datasets: a simulated dataset and two real biology datasets. By comparing with other methods, the experimental results indicate that the proposed method has higher modeling accuracy and it can be used to effectively construct a GRN. And at last, a GRN for fouling-forming genes of SFB was constructed using the proposed approach. Conclusion: The experiments indicated that the proposed approach can reconstruct a GRN precisely, and compared with other approaches, the proposed approach performs better in extracting the regulations among genes.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3