CSBPI_Site: Multi-Information Sources of Features to RNA Binding Sites Prediction

Author:

Zhang Lichao1,Huang Zihong1,Kong Liang2

Affiliation:

1. School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, China

2. School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China

Abstract

Background: RNA-binding proteins establish posttranscriptional gene regulation by coordinating maturation, editing, transport, stability, and translation of cellular RNAs. Immunoprecipitation experiments could identify the interaction between RNA and proteins, but they are limited due to the experimental environment and material. Therefore, it is essential to construct computational models to identify the function sites. Objective: Although some computational methods have been proposed to predict RNA binding sites, the accuracy could be further improved. Moreover, it is necessary to construct a dataset with more samples to design a reliable model. Here we present a computational model based on multi-information sources to identify RNA binding sites. Methods: We construct an accurate computational model named CSBPI_Site, based on extreme gradient boosting. The specifically designed 15-dimensional feature vector captures four types of information (chemical shift, chemical bond, chemical properties and position information). Results: The satisfied accuracy of 0.86 and AUC of 0.89 were obtained by leave-one-out crossvalidation. Meanwhile, the accuracies were slightly different (range from 0.83 to 0.85) among the three classifiers algorithm, which showed that the novel features are stable and fit to multiple classifiers. These results showed that the proposed method is effective and robust for the identification of noncoding RNA binding sites. Conclusion: Our method based on multi-information sources is effective to represent the binding sites information among ncRNAs. The satisfied prediction results of Diels-Alder riboz-yme based on CSBPI_Site indicates that our model is valuable to identify the function site.

Funder

Science Research Foundation of Hebei Normal University of Science & Technology

Natural Science Foundation of Hebei Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3