Genome-wide Characterization Deciphers Distinct Properties of Aquaporins in Six Phytophthora Species

Author:

Azad Abul Kalam1ORCID,Ahmed Jahed1ORCID,Al Hakim 1ORCID,Hasan Md. Mahbub2ORCID,Alum Md. Asraful3,Hasan Mahmudul1ORCID,Raihan Topu1ORCID,Ishikawa Takahiro4,Sawa Yoshihiro4

Affiliation:

1. Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

2. Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh

3. Forensic DNA Laboratory of Bangladesh Police, Malibagh, Dhaka-1000, Bangladesh

4. Department of Life Science and Biotechnology, Shimane University, Shimane 690-8504, Japan

Abstract

Background: Aquaporins, also known as major intrinsic proteins (MIPs), facilitate the membrane diffusion of water and some other small solutes. The roles of MIPs in plant physiological processes are established and now their roles in plant-pathogen interactions are getting more attention. Objective: To investigate the evolution, diversity, and structural insights of Phytophthora MIPs (PhyMIPs) and to compare them to those in other domains of life. Methods: Bioinformatics approaches were used to identify and characterize the PhyMIPs. The phylogenetic analysis was done with MEGA7.0 using maximum likelihood method. The prediction of transmembrane α-helices was done by using SOSUI and TMpred servers, and that of subcellular localization was performed with WoLF PSORT and Cello prediction system. The structure of PhyMIP genes was predicted by GeneMark.hmm ES-3.0 program. The 3D homology models were generated using the Molecular Operating Environment software and the stereochemical quality of the templates and models was assessed by PROCHECK. The PoreWalker server was used to detect and characterize PhyMIP channels from their 3D structural models. Results: Herein, we identified 17, 24, 27, 19, 19, and 22 full-length MIPs, respectively, in the genomes of six Phytophthora species, P. infestans, P. parasitica, P. sojae, P. ramorum, P. capsici, and P. cinnamomi. Phylogenetic analysis showed that the PhyMIPs formed a completely distinct clade from their counterparts in other taxa and were clustered into nine subgroups. Sequence and structural properties indicated that the primary selectivity-related constrictions, including aromatic arginine (ar/R) selectivity filter and Froger's positions in PhyMIPs were distinct from those in other taxa. The substitutions in the conserved Asn-Pro-Ala motifs in loops B and E of many PhyMIPs were also divergent from those in other taxonomic domains. The group-specific consensus sequences/ motifs deciphered in different loops and transmembrane α-helices of PhyMIPs were distinct from those in plants, animals, and other microbes. Conclusion: This study represents PhyMIPs with distinct evolutionary and structural properties, and the data collectively indicates that PhyMIPs might have novel functions.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3