Development of a Gene Expression Panel, for the Prediction of Protein Abundances in Cancer Cell Lines

Author:

Lee Gunhee1ORCID,Chung Yeun-Jun2ORCID,Lee Minho3

Affiliation:

1. Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seocho-gu, Seoul, Korea

2. Department of Microbiology, IRCGP, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea

3. Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyangsi, Gyeonggi-do, Korea

Abstract

Background: Due to the ease of quantifying mRNA expression in comparison with that of protein abundances, many studies have utilized it to infer protein product quantification. However, the mRNA expression values for a gene and its protein products are not known to have a strong relationship, because of the complex mechanisms required to regulate the amounts of protein levels, from translation to post-translational modifications. Methods: We have developed, in this study, models to predict protein levels from mRNA expression levels using the transcriptome and reverse phase protein arrays (RPPA)-based on protein levels in pancancer cell lines. When predicting the abundance of a protein expression, in addition to using RNA expression of the corresponding gene, we also used RNA expression levels of a particular set of other genes. By applying support vector regression, we have identified a 47-gene expression panel that contributes to the improved performance of the prediction, and its optimal subsets specific to each protein species. Result and Conclusion: Eventually, our final prediction models doubled the number of predictable protein expressions (r > 0.7). Due to the weaknesses of RPPA, our model had some limitations, however, we expect that these prediction models and the panel can be widely used in the future to infer protein abundances.

Funder

National Research Foundation of Korea

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3