A Comparison Analysis for Protein-Protein Interaction Network-Based Methods in Prioritizing Arabidopsis Functional Genes

Author:

Si Chun-Jing1ORCID,Deng Si-Min1,Quan Yuan1,Zhang Hong-Yu1

Affiliation:

1. Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China

Abstract

Background: Connecting genes to phenotypes is still a great challenge in genetics. Research related to gene-phenotype associations has made remarkable progress recently due to high-throughput sequencing technology and genome-wide association study (GWAS). However, these genes, which are considered to be significantly associated with a target phenotype according to traditional GWAS, are less precise or subject to greater confounding. Objective: The present study is an attempt to prioritize functional genes for complex phenotypes employing protein-protein interaction (PPI) network-based systems genetics methods on available GWAS results. Method: In this paper, we calculated the functional gene enrichment ratios of the trait ontology of A. thaliana for three common systems genetics methods (i.e. GeneRank, K-shell and HotNet2). Then, comparison of gene enrichment ratios obtained by PPI network-based methods was performed. Finally, a hybrid model was proposed, integrating GeneRank, comprehensive score algorithm and HotNet diffusion-oriented subnetworks (HotNet2) to prioritize functional genes. Results: These PPI network-based systems genetics methods were indeed useful for prioritizing phenotype-associated genes. And functional gene enrichment ratios calculated from the top 20% of GeneRank-identified genes were higher than these ratios of K-shell and these ratios of HotNet2 for most phenotypes. However, the hybrid model can improve the efficiency of functional gene enrichment for A. thaliana (up to 40%). Conclusion: The present study provides a hybrid method integrating GeneRank, comprehensive score algorithm and HotNet2 to prioritize functional genes. The method will contribute to functional genomics in plants. The source data and codes are freely available at http://47.242.161.60/Plant/.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3