Construction of Anatomical Structure-specific Developmental Dynamic Networks for Human Brain on Multiple Omics Levels

Author:

Wang Yingying1ORCID,Yang Yu1,Liu Jianfeng2,Li Keshen1

Affiliation:

1. Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China

2. Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China

Abstract

Background: Human brain development is a series of complex processes exhibiting profound changes from gestation to adulthood. Objective: We aimed to construct dynamic developmental networks for each anatomical structure of the human brain based on omics’ levels in order to gain a new systematical brain map on the molecular level. Methods: We performed the brain development analyses by constructing dynamical networks between adjacent time points on different grouping levels of anatomical structures. The gene-time networks were first built to obtain the developing brain dynamical maps on transcriptome level. Then miRNA-mRNA networks and protein-protein networks were constructed by integrating the information from miRNomics and proteomics. The time and structure-specific biomarkers were filtered based on analyses of topological characters. Results: The most dramatic developmental time and structure were fetal-infancy and telencephalon, respectively. Cortex was the key developmental region in ‘late fetal and neonatal’ and ‘early infancy’. The development of the temporal lobe was different from other lobes since the significant changes of molecules were found only in the comparison pair ‘early fetal-early mid-fetal’ and ‘adolescence-young adulthood’. Interestingly, the changes among different brain structures inside adolescence and adulthood were bigger than other time points. hsa-miR-548c-3p and H3C2 may be new brain development indicators considering their key roles in networks. Conclusion: To our knowledge, this study is the first report of dynamical brain development maps for different anatomical structures on multiple omics. The results provide a new sight of brain development in a systematical way which may provide a more accurate understanding of the human brain.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3