Predicting Interactions Between Pathogen and Human Proteins Based on the Relation Between Sequence Length and Amino Acid Composition

Author:

Alguwaizani Saud1,Ren Shulei1,Huang De-Shuang2,Han Kyungsook1ORCID

Affiliation:

1. Department of Computer Engineering, Inha University, Incheon, South Korea

2. School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

Abstract

Aim: Both bacterial infection and viral infection involve a large number of protein-protein interactions (PPIs) between a pathogen and its target host. Background: So far, many computational methods have focused on predicting PPIs within the same species rather than PPIs across different species. Methods: From the extensive analysis of PPIs between Yersinia pestis bacteria and humans, we recently discovered an interesting relation; a linear relation between amino acid composition and sequence length was observed in many proteins involved in PPIs. We have built a support vector machine (SVM) model, which predicts PPIs between human and bacteria using two feature types derived from the relation. The two feature types used in the SVM are the amino acid composition group (AACG) and the difference in amino acid composition between host and pathogen proteins. Result: The SVM model achieved high performance in predicting bacteria-human PPIs. The model showed an accuracy of 96%, sensitivity of 94%, and specificity of 98% in predicting PPIs between humans and Yersinia pestis, in which there is a strong relation between amino acid composition and sequence length. The SVM model was also tested in predicting PPIs between human and viruses, which include Ebola, HCV, and SARS-CoV-2, and showed a good performance. Conclusion: The feature types identified in our study are simple yet powerful in predicting pathogenhuman PPIs. Although preliminary, our method will be useful for finding unknown target host proteins or pathogen proteins and designing in vitro or in vivo experiments.

Funder

National Research Foundation of Korea

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3