Identification of Disease-specific Single Amino Acid Polymorphisms Using a Simple Random Forest at Protein-level

Author:

He Jian1,Yuan Rongao2,Xu Lei1,Guo Yanzhi1,Li Menglong1

Affiliation:

1. College of Chemistry, Sichuan University, Chengdu, China

2. College of Computer Science, Sichuan University, Chengdu, China

Abstract

Background: The number of human genetic variants deposited into publicly available databases has been increasing exponentially. Among these variants, non-synonymous single nucleotide polymorphisms (nsSNPs), also known as single Amino Acid Polymorphisms (SAPs), have been demonstrated to be strongly correlated with phenotypic variations of traits/diseases. Objective: However, the detailed mechanisms governing the disease association of SAPs remain unclear. Thus, further investigation of new attributes and improvement of the prediction becomes more and more urgent since amount of unknown disease-related SAPs need to be investigated. Methods: Based on the principle of Random Forest (RF), we firstly constructed a new effective prediction model for SAPs associated with a particular disease from protein sequences. Four usual sequence signature extractions were separately performed to select the optimal features. Then SAP peptide lengths from 12 to 202 were also optimized. Results: The optimal models achieve higher than 90% accuracy and Area Under the Curve (AUC) of over 0.9 on all 11 external testing datasets. Finally, the good performance on an independent test set with an accuracy higher than 95% proves the superiority of our method. Conclusion: In this paper, based on Random Forest (RF), we constructed 11 disease-association prediction models for SAPs from the protein sequence level. All models yield prediction accuracy higher than 90% and Area Under the Curve (AUC) more than 0.9. Our method only using the information of protein sequences are more universal than those that depend on some additional information or predictions about the proteins.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3