Stroke Lesion Segmentation and Analysis using Entropy/Otsu’s Function – A Study with Social Group Optimization

Author:

Satapathy Suresh Chandra1,Fernandes Steven Lawrence2,Lin Hong3

Affiliation:

1. School of Computer Engineering, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar- 751024, Odisha, India

2. Department of Electronics and Communication Engineering, Sahyadri College of Engineering and Management, Mangalore, Karnataka, India

3. Department of Computer and Mathematical Sciences, University of Houston-Downtown, Houston, Texas, United States

Abstract

Background: Stroke is one of the major causes for the momentary/permanent disability in the human community. Usually, stroke will originate in the brain section because of the neurological deficit and this kind of brain abnormality can be predicted by scrutinizing the periphery of brain region. Magnetic Resonance Image (MRI) is the extensively considered imaging procedure to record the interior sections of the brain to support visual inspection process. Objective: In the proposed work, a semi-automated examination procedure is proposed to inspect the province and the severity of the stroke lesion using the MRI. associations while known disease-lncRNA associations are required only. Method: Recently discovered heuristic approach called the Social Group Optimization (SGO) algorithm is considered to pre-process the test image based on a chosen image multi-thresholding procedure. Later, a chosen segmentation procedure is considered in the post-processing section to mine the stroke lesion from the pre-processed image. Results: In this paper, the pre-processing work is executed with the well known thresholding approaches, such as Shannon’s entropy, Kapur’s entropy and Otsu’s function. Similarly, the postprocessing task is executed using most successful procedures, such as level set, active contour and watershed algorithm. Conclusion: The proposed procedure is experimentally inspected using the benchmark brain stroke database known as Ischemic Stroke Lesion Segmentation (ISLES 2015) challenge database. The results of this experimental work authenticates that, Shannon’s approach along with the LS segmentation offers superior average values compared with the other approaches considered in this research work.</P>

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3