Performance Improvement of Gene Selection Methods using Outlier Modification Rule

Author:

Shahjaman Md.1,Kumar Nishith2,Mollah Md. Nurul Haque3

Affiliation:

1. Department of Statistics, Begum Rokeya University, Rangpur-5400, Bangladesh

2. Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh

3. Laboratory of Bioinformatics, University of Rajshahi, Rajshahi-6205, Bangladesh

Abstract

Background: DNA microarray technology allows researchers to measure the expression levels of thousands of genes simultaneously. The main objective of microarray gene expression (GE) data analysis is to detect biomarker genes that are Differentially Expressed (DE) between two or more experimental groups/conditions. Objective: There are some popular statistical methods in the literature for the selection of biomarker genes. However, most of them often produce misleading results in presence of outliers. Therefore, in this study, we introduce a robust approach to overcome the problems of classical methods. Methods: We use median and median absolute deviation (MAD) for our robust procedure. In this procedure, a gene was considered as outlying gene if at least one of the expressions of this gene does not belong to a certain interval of the proposed outlier detection rule. Otherwise, this gene was considered as a non-outlying gene. Results: We investigate the performance of the proposed method in a comparison of the traditional method using both simulated and real gene expression data analysis. From a real colon cancer gene expression data analysis, the proposed method detected an additional fourteen (14) DE genes that were not detected by the traditional methods. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we observed that these additional 14 DE genes are involved in three important metabolic pathways of cancer disease. The proposed method also detected nine (9) additional DE genes from another head-and-neck cancer gene expression data analysis; those involved in top ten metabolic pathways obtain from the KEGG pathway database. Conclusion: The simulation as well as real cancer gene expression datasets results show better performance with our proposed procedure. Therefore, the additional genes detected by the proposed procedure require further wet lab validation.

Funder

National Natural Science Foundation of China

Tianjin Natural Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3